fraccalc

an exact precision calculator language
version 1.0

Mikhail V. Sinitcin

This manual documents fraccalc, an exact precision calculator
language. fraccalc may be considered as the direct descendant of
B."Kernighan and R.~Pike hoc.

This manual is part of GNU fraccalc.

Copyright (C) 2007 Mikhail V. Sinitcin.

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are pre-
served on all copies.

Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission notice
identical to this one except for the removal of this paragraph (this paragraph
not being relevant to the printed manual).

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this man-
ual into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the Foundation.

You may contact the author by: e-mail: sinitcinmv@rambler.ru

mailto:sinitcinmv@rambler.ru

Chapter 1: Introduction 1

1 Introduction

1.1 Description
fraccalc [-h/-help] [-f/-file] [-1/-1ib] [-V/-version]

fraccalc is a language that supports proper and improper fractions
with interactive execution of statements. There are some similarities in the
syntax to the C programming language. fraccalc starts by processing code
from the standard input. fraccalc may also read code from the file on the
command line after -f or -1 option. The option -1 allows to add commands
from standard input. The option -f causes immediate exit after executing
last command from file. All code is executed as it is read.

The author would like to thank Vladimir Lidovski for guidance and
some advice.

Email bug reports to sinitcinmv@rambler.ru. Be sure to include
the word "fraccalc" somewhere in the "Subject:" field.

1.2 Command Line Options
fraccalc takes the following options from the command line:

-h, --help
Print the usage and exit.

-1, --1ib Obtain commands from file.

-f, ——-file
Obtain commands from file end exit.

-V, —-version
Print the version number.

mailto:sinitcinmv@rambler.ru

Chapter 2: Basic Elements 2

2 Basic Elements

2.1 Fractions

The basic element in fraccalc is the fraction. The fractions may be proper,
improper, and decimal. All numbers are represented internally in the fraction
form and all computations are done with fractions. The integer part of a
number must be separated from fractional part by floating point sign. The
numerator and the denominator are separated by spacing underscore or low
line sign.

2.2 Variables

Numbers are stored in variables. Names begin with a letter followed by any
number of letters, digits and underscores.

2.3 Comments

Comments in fraccalc start with the characters # and end with the end of
line marker. The end of line character is not part of the comment and is
processed normally.

Chapter 3: Expressions 3

3 Expressions

3.1 About Expressions and Special Variables

The numbers are manipulated by expressions and statements. Since the
language was designed to be interactive, statements and expressions are
executed as soon as possible. There is no main program. Instead, code
is executed as it is encountered. (Functions, discussed in detail later, are
defined when encountered.)

A simple expression is just a constant. fraccalc converts constants
into fractions. Input numbers may contain the characters 0-9, "." and "_".

Full expressions are similar to many other high level languages. Since
there is only one kind of number, there are no rules for mixing types.
3.2 Basic Expressions

In the following descriptions of legal expressions, "expr" refers to a complete
expression and "var" refers to a simple variable. A simple variable is just a

name
- expr The result is the negation of the expression.
++ var The variable is incremented by one and the new value is the

result of the expression.

-- var The variable is decremented by one and the new value is the
result of the expression.

var ++ The result of the expression is the value of the variable and then
the variable is incremented by one.

var —-- The result of the expression is the value of the variable and then
the variable is decremented by one.

expr + expr
The result of the expression is the sum of the two expressions.

eXpr - expr
The result of the expression is the difference of the two expres-
sions.

expr * expr
The result of the expression is the product of the two expressions.

expr / expr
The result of the expression is the quotient of the two expres-
sions.

expr ~ expr
The result of the expression is the value of the first raised to
the second. The second expression must be an integer. (If the

Chapter 3: Expressions 4

second expression is not an integer, the expression is truncated
to get an integer value.) It should be noted that expr~0 will
always return the value of 1.

(expr) This alters the standard precedence to force the evaluation of
the expression.

var = expr
The variable is assigned the value of the expression.

3.3 Relational Expressions

Relational expressions are a special kind of expression that always evaluate
to 0 or 1, O if the relation is false and 1 if the relation is true. These may
appear in any legal expression. The relational operators are

exprl < expr2
The result is 1 if exprl is strictly less than expr2.

exprl <= expr2
The result is 1 if exprl is less than or equal to expr2.

exprl > expr2
The result is 1 if exprl is strictly greater than expr2.

exprl >= expr2
The result is 1 if exprl is greater than or equal to expr2.

exprl == expr2
The result is 1 if exprl is equal to expr2.

exprl != expr2
The result is 1 if exprl is not equal to expr2.

3.4 Boolean Expressions

Boolean operations are also legal. The result of all boolean operations are 0
and 1 (for false and true) as in relational expressions. The boolean operators
are:

lexpr The result is 1 if expr is 0.

expr && expr
The result is 1 if both expressions are non-zero.

expr || expr
The result is 1 if either expression is non-zero.

Chapter 3: Expressions 5)

3.5 Precedence

The expression precedence is as follows: (lowest to highest)
|| operator, left associative
&& operator, left associative
! operator, nonassociative
Assignment operator, right associative
Relational operators, left associative
+ and - operators, left associative
* and / operators, left associative
~ operator, right associative
unary - operator, nonassociative
++ and -- operators, nonassociative

So fraccalc uses the same expression precedence as in C program-
ming language. Consider the expression:
a=3<5
This would assign the result of "3 < 5" (the value 1) to the variable
lla".

3.6 Special Expressions

There are a few more special expressions that are provided in fraccalc.
These have to do with user-defined functions and standard functions. They
all appear as "name (parameters)". See Chapter 5 [Functions|, page 8, for
user-defined functions. The standard functions are:

integer (expression)
The value of the integer part of a number.

numerator (expression)
The value of the numerator of a fraction.

denominator (expression)
The value of the denomiminator of a fraction.

Chapter 4: Statements 6

4 Statements

Statements (as in most algebraic languages) provide the sequencing of ex-
pression evaluation. In fraccalc statements are executed "as soon as pos-
sible." Execution happens when a newline in encountered and there is one
or more complete statements. Due to this immediate execution, newlines
are very important in fraccalc. In fact, both a semicolon and a newline
are used as statement separators. An improperly placed newline will cause
a syntax error. A statement list is a series of statements separated by semi-
colons and newlines.

expression The expression is evaluated and printed to the output. After
the number is printed, a newline is printed. The expression
terminated by semicolon is not printed to the output.

if (expression) statementl [else statement2]
The if statement evaluates the expression and executes state-
ment1 or statement2 depending on the value of the expression. If
the expression is non-zero, statement1 is executed. If statement2
is present and the value of the expression is 0, then statement2
is executed.

while (expression) statement
The while statement will execute the statement while the ex-
pression is non-zero. It evaluates the expression before each
execution of the statement. Termination of the loop is caused
by a zero expression value or the execution of a break statement.

for ([expressionl] ; [expression2] ; [expression3]) statement

The for statement controls repeated execution of the statement.
Expressionl is evaluated before the loop. Expression?2 is eval-
uated before each execution of the statement. If it is non-zero,
the statement is evaluated. If it is zero, the loop is terminated.
After each execution of the statement, expression3 is evaluated
before the reevaluation of expression2. If expressionl or expres-
siond are missing, nothing is evaluated at the point they would
be evaluated. If expression2 is missing, it is the same as substi-
tuting the value 1 for expression2. The following is equivalent
code for the for statement:

expressionl;

while (expression2) {
statement;
expression3;

¥

break This statement causes a forced exit of the most recent enclosing
while statement or for statement.

Chapter 4: Statements 7

return expression
Return the value of the expression from a function. (See
Chapter 5 [Functions], page 8.)

include filename
Obtain commands from file with filename.

exit When the exit statement is read, the fraccalc processor is
terminated.

4.1 Pseudo Statements

These statements are not statements in the traditional sense. They are not
executed statements. Their function is performed at "compile" time.

proper Set default proper fraction format for output. This mode is set
initially.

improper Set default improper fraction format for output.

Chapter 5: Functions 8

5 Functions

Functions provide a method of defining a computation that can be executed
later. Functions in fraccalc always compute a value and return it to the
caller. Function definitions are "dynamic" in the sense that a function is
undefined until a definition is encountered in the input. That definition is
then used until another definition function for the same name is encountered.
The new definition then replaces the older definition. A function is defined
as follows:
name (parameters) { newline
statement_list }

A function call is just an expression of the form "name (parameters)".

Parameters are numbers. In the function definition, zero or more pa-
rameters are defined by listing their names separated by commas. Numbers
are only call by value parameters. It is possible to miss some parameters
values at function call — these missed parameters are set to 0. These missed
parameters may be used as local variables inside function body only.

The function body is a list of fraccalc statements. Again, state-
ments are separated by semicolons or newlines. Return statements cause
the termination of a function and the return of a value. There are two ver-
sions of the return statement. The first form, "return", returns the value 0
to the calling expression. The second form, "return expression", computes
the value of the expression and returns that value to the calling expression.
There is an implied "return 0" at the end of every function. This allows a
function to terminate and return 0 without an explicit return statement.

At the description of function the opening brace be on the same line
and all other parts must be on following lines.

d (n) { return (2*n); }
d (n) {
return (2#n);

¥

The following is the definition of the recursive factorial function.

fact (x) {
if (x <= 1) return 1;
return f(x-1) * x;

}

Chapter 6: Space in numbers 9

6 Space in numbers

Some implementations of bc allow spaces in numbers. For example, "x=1
3" would assign the value 13 to the variable x. The same statement would
cause a syntax error in this version of fraccalc.

Chapter 7: Errors in execution 10

7 Errors in execution

If a syntax error in expression is found then the processor skips this expres-
sion.

Table of Contents

1 Introduction........................ 1
1.1 DeSCriptionoooiiii e 1
1.2 Command Line Options. ..., 1

2 BasicElements.................................. 2
2.1 Fractions.oooiiii 2
2.2 Variables.o 2
2.3 COMIMENES « .\ttt ettt e 2

3 Expressions................. .. 3
3.1 About Expressions and Special Variables 3
3.2 Basic EXPressionsoooiiiiiiii 3
3.3 Relational Expressions ... 4
3.4 Boolean EXpPressionsc.oouiiiiiiiiiiiiiii i 4
3.5 Precedence........... i 5
3.6 Special EXpressionsoii i 5

4 Statements.............. 6
4.1 Pseudo Statements..............oiiiiiiiiiii 7

5 Functions.............. 8

6 Spaceinnumbers............................... 9

7 Errors in execution.................... 10

	Introduction
	Description
	Command Line Options

	Basic Elements
	Fractions
	Variables
	Comments

	Expressions
	About Expressions and Special Variables
	Basic Expressions
	Relational Expressions
	Boolean Expressions
	Precedence
	Special Expressions

	Statements
	Pseudo Statements

	Functions
	Space in numbers
	Errors in execution

