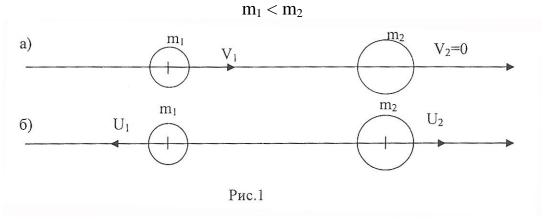
МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени К.Э. Циолковского»

Кафедра «Моделирование систем и информационные технологии»

Определение необратимых потерь энергии и скоростей шаров при ударе


Методические указания к лабораторной работе по курсу «Общая физика»

ВВЕДЕНИЕ

Цель работы:

Изучение законов сохранения импульса и энергии при упругом ударе шаров.

Рассмотрим прямой абсолютно упругий центральный удар двух шаров, рис. 1

Скорости шаров: а) - до удара; б) - после удара

Полагая, что на шары действуют внешние силы, и что в процессе столкнове-

ния не приисходит превращения механической энергии в другие (немеханические) ее виды, можно применить законы сохранения импульса и кинетической энергии

для описания удара шаров:

(1)
$$\begin{aligned} m_1V_1 &= m_1U_1 + m_2U_2 \\ m_1V_1^2 &= m_1U_1^2 &= m_2U_2^2 \\ &----- &= ----- + ----- \\ (2) &= 2 &= 2 &= 2 \end{aligned}$$

Приведя уравнение (1) к скалярному виду, будем иметь

$$m_1V_1 = -m_1U_1 + m_2U_2$$

(3)

Совместное решение уравнений (2) и (3) позволяет найти скорости шаров после удара $(\mathbf{m}_2$ - $\mathbf{m}_1)$ \mathbf{V}_1

В процессе удара оба шара действуют друг на друга упругими силами, кото-рые, меняясь со временем по величине, остаются равными между собой и проти-воположно направлены в любой момент времени, пока шары находятся в соприко-сновении. Эти внутренние силы взаимодействия сообщают соударяющимся ша-рам равные по величине и противоположные по направлению импульсы. Это ус-ловие обеспечивает выполнение закона сохранения импульса.

Для абсолютно упругого соударения шаров выполняется и закон сохранения кинетической энергии.

Таким образом, зная массы шаров и их скорости до соударения, легко рас-

считать кинетические энергии и скорости шаров после соударения.

В процессе соударения реальных шаров часть их кинетической энергии нео-

братимо преобразуется в другие формы энергии. Следовательно, сумма кинети-ческих энергий реальных шаров до столкновения всегда больше суммы их кине-тических энергий после соударения на величину необратимых потерь Е, т.е.

$$E = 1/2 [m_1V_1^2 - (m_1U_1^2 + m_2U_2^2)]$$

(6)

Для реальных шаров расчет скоростей шаров и их кинетических энергий после соударения очень затруднителен, поэтому в данной работе эти величины определяются экспериментально.

Шары для эксперимента подвешены на двух нитях, расположенных на рас-стоянии, равном сумме радиусов шаров, причем длина подвеса L (расстояние от

точки подвеса до центра шара) каждого из шаров одинакова (рис.2).

Сообщим шару массой $\mathbf{m_1}$ потенциальную энергию равную $\mathbf{m_1gL}$, отведя

его на угол $\alpha = 90^{\circ}$, и отпустим. В момент прохождения им положения равнове-

сия произойдет соударение его с шаром массой \mathbf{m}_2 . Так как кинетическая энергия шара \mathbf{m}_1 перед соударением равна

$$(1/2)m_1V_1^2 = m_1gL$$

(7)

то его скорость до соударения равна

$$V_1 = \sqrt{2gL}$$

(8)

Сопротивлением воздуха и трением в данном случае пренебрегаем.

После соударения произойдет перераспределение кинетической энергии

шара $\mathbf{m_1}$ между обоими шарами и каждый из шаров будет двигаться после соуда-рения со своей скоростью до тех пор, пока его кинетическая энергия не перейдет

в потенциальную.

При этом шар \mathbf{m}_1 поднимется на высоту \mathbf{h}_1 , описав дугу α , а шар \mathbf{m}_2 на вы-соту \mathbf{h}_2 , описав дугу β . Тогда, аналогично уравнению (8) можно написать уравне-

ния для скоростей шаров после упругого удара

$$\mathbf{U_1'} = \sqrt{2\mathbf{g}} \; \mathbf{h_1} \qquad \qquad \mathbf{U_2'} = \sqrt{2\mathbf{g}} \; \mathbf{h_2}$$

Так как $h_1=2L\,Sin^2(\alpha/2)$, а $h_2=2L\,Sin^2(\beta/2)$ то скорости шаров после упругого

удара будут равны

U₁' = 2 Sin²(α/2)
$$\sqrt{g}$$
 L
(9)
U₂' = 2 Sin²(β/2) \sqrt{g} L
(10)

Сопоставляя равенства (6), (8), (9), (10) получим выражение для потерь энергии при реальном упругом соударении шаров:

E =
$$m_1gL - 2 m_1gL \sin^2(\alpha/2) - U_2 = 2 m_2gL \sin^2(\beta/2)$$

(11)

которое можно привести к виду

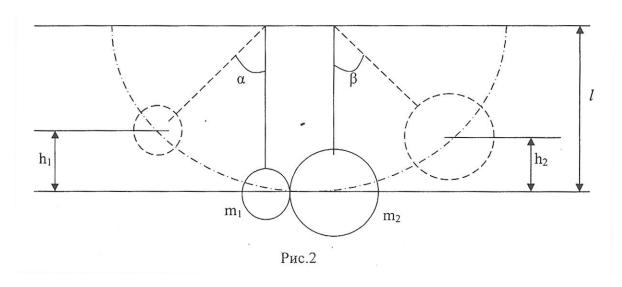
$$E = [m_1 \cos \alpha - m_2 (1 - \cos \beta)] g L$$

(12)

Скорости шаров при абсолютно упругом ударе в условиях данного опыта соответственно равны

(13)
$$U_{1} = \frac{m_{2} - m_{1}}{\sqrt{g L}}$$

$$m_{1} + m_{2}$$


$$2m_{1}$$

$$U_{1} = - \sqrt{g L}$$

$$(14)$$

$$m_{1} + m_{2}$$

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка (рис.2) представляет собой стенд с угломер-ным устройством для измерения углов отклонения шаров после удара.

Проведение эксперимента и обработка результатов

- 1. Определить массы шаров взвешиванием на весах
- 2. Определить длину подвеса, измерив длину нити подвеса и диаметры шаров
- 3. Результаты измерений в пунктах 1-2 занести в таблицу п.1
- 4. Отвести шар $\mathbf{m_1}$ на угол $\alpha = 90^\circ$ и отпустить
- 5. Измерить после соударения шаров их углы отклонения, повторяя опыт несколько раз
- 6. Результаты измерений занести в таблицу п.2
- 7. Вычислить потери энергии при ударе по формуле (12)
- 8. Определить скорости шаров после удара, рассматривая его в условиях данного

эксперимента как идеальный и неидеальный, и сравнить их между собой, испо-

льзуя уравнение (8), (12) и (9), (13)

9. Оценить погрешность полученных значений искомых величин.

Отчет по лабораторной работе

Отчет по лабораторной работе выполняется на отдельных листах и должен

содержать:

- 1. Название и цель работы.
- 2. Вывод расчетной формулы для величины определяемой в данной работе.
- 3. Схему экспериментальной установки, перечень измерительных приборов и их

погрешность.

- 4. Таблицы результатов измерений.
- 5. Расчет искомой величины и расчет ее погрешностей.
- 6. Выводы по работе.

Контрольные вопросы

- 1. Импульс материальной точки, абсолютно твердого тела, системы тел.
- 2. Импульс и второй закон Ньютона
- 3. Закон сохранений импульса.
- 4. Кинетическая и потенциальная энергии. Закон сохранения механической энергии.
- 5. Удар. Виды удара, их характеристика.
- 6. Процесс превращения энергии при ударе шаров.

- 7. Законы сохранения импульса и энергии при ударе.
- 8. Потери энергии при ударе шаров.

Литература

- 1. Савельев И.В. Курс физики М.; Наука, 1989.Т1 350с.
- 2. Лабораторный практикум по физике / Под ред. К.А.Барсукова и Ю.И.Уханова М.: Высшая школа, 1988, 350с.
- 3. Сквайрс Дж. Практическая физика М.; 1971, 245с.

<u>Приложение</u>

Таблица п.1

Масса шара, т1	ΚΓ
Масса шара, т2	КГ
Длина нити подвеса, L_0	M
Диаметр шара, d ₁	M
Диаметр шара, d ₂	M
Длина подвеса, L	M

Таблица п.2

Номер	Углы отклонения шаров после удара				
измерения	α		β		
	(град)	(рад)	(град)	(рад)	
1					
2					
3					
i					
•••					
Среднее					